GROUND RADAR STEALTH BERBASIS MICROWAVE ABSORBER DALAM PERANG UDARA

Authors

  • Harry Cahyadi Wijaya Kusuma Universitas Pertahanan RI
  • Supri Abu Universitas Pertahanan RI
  • Bambang Kustiawan Universitas Pertahanan RI

DOI:

https://doi.org/10.33172/jspu.v9i1.7981

Abstract

This research background is based on scenario changes of war concepts from conventional to technology-based, where stealth is one of the technologies which is important in air warfare. This fact creates phenomena that show “There’s no stealth technology had been applied to protect Ground Radar Station as an enemy centre of gravity”, related to that research question which is formulated on how to design an adaptive “Ground Radar Stealth” (GRS) and why it is needed. All relevant theories used in this research are stealth, Radar, and Microwave Absorbers. Research Methode that being used is descriptive qualitative by comparing theories and using QFD as tools. In designing GRS some informants are involved such as military expert, academic, commander of fighter aircraft squadron and Radar. The result of this research is formulating a GRS design that had been adjusted with the theories to apply to GRS and is also useful. To make this research can be realised support in the form of funds, time, and cooperation from the Indonesian Air Force Itself and Academic sources are needed. Also, to optimize GRS design, it is suggested to create layers of defence like an Iron dome, but adjusted to the Indonesian Geographical environment

Author Biographies

Harry Cahyadi Wijaya Kusuma, Universitas Pertahanan RI

Prodi Strategi Pertahanan Udara

Fakultas Strategi Pertahanan

Supri Abu, Universitas Pertahanan RI

Prodi Strategi Pertahanan Udara

Fakultas Strategi Pertahanan

Bambang Kustiawan, Universitas Pertahanan RI

Prodi Strategi Pertahanan Udara

Fakultas Strategi Pertahanan

References

Alexandru Marius, P. (2010). General principles of passive radar signature reducing – stealth technology and its application. Incas Bulletin, 2(1), 49–54. https://doi.org/10.13111/2066-8201.2010.2.1.6

Arnold, Brian A; Vitrikas, R. P. (1992). EFFECT OF MODERN TECHNOLOGY ON AIR POWER AND INTELLIGENCE SUPPORT (Issue April).

Banga, N. (2017). RESEARCH ARTICLE RESEARCH ON STEALTH AIRCRAFT AND ITS EFFECT ON RADAR SYSTEM IN MODERN WARFARE. International Journal of Current Research, 9(08), 55654–55658.

Bilotti, F., & Sevgi, L. (2012). Metamaterials: Definitions, properties, applications, and FDTD-based modeling and simulation (Invited paper). International Journal of RF and Microwave Computer-Aided Engineering, 22(4), 422–438. https://doi.org/10.1002/mmce.20634

Bowers, I. (2017). Power asymmetry and the role of deterrence in the South China Sea. Korean Journal of Defense Analysis, 29(4), 551–573.

Cataldo, G. (2015). Development of ultracompact, high-sensitivity, space-based instrumentation for far-infrared and submillimeter astronomy. June.

Costa, F., Kazemzadeh, A., Genovesi, S., & Monorchio, A. (2016). Electromagnetic absorbers based on frequency selective surfaces. Resistor, 37(1), 1.

Dove, L. L. (n.d.). What is an infrared grill_ - How Infrared Grills Work _ HowStuffWorks.

Echols, John M; Shadilly, H. (2000). Kamus Inggris Indonesia. PT Gramedia Pustaka Utama.

Gunzinger, M., Rehberg, C., & Autenried, L. (2020). Five priorities for the air force’s future combat air force. CSBA Center for Strategic and Budgetary Assessments.

Hasanah, U. (2007). Penerapan konsep quality function deployment (QFD) dalam meningkatkan kualitas dan mengembangkan produk sepeda motor honda karisma 125D.

Jenn, D. (2011). RCS Reduction and Control. In EC4630 Radar and Laser Cross Section (Issue Chapter 7, pp. 1–18). Naval Postgraduate School Department of Electrical & Computer Engineering.

Jha, B., & Aswale, M. (2016). Mechanical Aspects in Stealth Technology: Review. Int. J. of Eng. Tech. Res., 4(4), 21–27. https://www.scribd.com/document/348322189/IJETR041555

John W, C. (2019). Research Design. Pustaka Pelajar.

Kapur, V. (2014). Stealth Technology and Its Effect on Aerial Warfare. In IDSA Monographh Series (Vol. 33, Issue 33).

Kolonel, Budi Sarjono, H. (1995). OPTIMALISASI GELAR RADAR HANUD GUNA MENINGKATKAN PERTAHANAN UDARA DALAM RANGKA MENJAGA KEDAULATAN NEGARA DI UDARA. 1945, 1–22.

Kopp, C. (2000). Stealth in Strike Warfare. In Ausairpower.Net. https://www.ausairpower.net/API-VLO-Strike.html

Kopp, C. (2013). Stealth Technology. https://doi.org/n438

Kott, A., & Perconti, P. (2018). Long-term forecasts of military technologies for a 20-30 year horizon: An empirical assessment of accuracy. ArXiv.

Kumar, R. A. (2014). Stealth Technology. https://doi.org/10.4135/9781452276335.n438

Kumar, S., Mishra, S., & Gupta, S. (2014). Stealth Technology : the Fight Against Radar. International Journal of Advances in Electronics and Computer Science, 1(2), 44–49.

Kurz, A., & Brom, S. (2014). The Lessons of Operation Protective Edge.

Layman’s Terms _ Definition of Layman’s Terms by Merriam-Webster. (n.d.). https://www.merriam-webster.com/dictionary/layman%27s terms

Mohammad AA, Caecilia SW, L. I. (2015). RANCANGAN PRODUK SEPATU OLAHRAGA MULTIFUNGSI MENGGUNAKAN METODE QUALITY FUNCTION DEPLOYMENT (QFD). Jurnal Online Institut Teknologi Nasional, 3.

Munir, Ahmad; Nur, L. O. (2012). Rancang Bangun Material Antideteksi Radar Berbasis Teknologi Texture Surface Untuk Platform Kendaraan Tempur. 14–20.

Neill, M. B. P. O. (2011). The Four Forces Airpower Theory.

Nur, L. O., Kurniawan, A., Sugihartono, & Munir, A. (2015). Theoretical analysis of resonant frequency for AMC-based absorber composed of square patch array. International Journal on Electrical Engineering and Informatics, 7(2), 284–296. https://doi.org/10.15676/ijeei.2015.7.2.9

Nur, L. O., & Munir, A. (2015). Thin em wave absorber composed of octagonal patch array and its characteristic measurement. 2015 3rd International Conference on Information and Communication Technology, ICoICT 2015, 604–607. https://doi.org/10.1109/ICoICT.2015.7231494

Ong, C. H. (2015). A Study of Sun Tzu’s Art of War and Clausewitz’s On War. Pointer, Journal of The Singapore Armed Forces, 41(2), 68–80. https://www.mindef.gov.sg/oms/content/dam/imindef_media_library/graphics/pointer/PDF/2015/Vol.41 No.2/7) V41N2_A Study Of Sun Tzu-s Art Of War And Clausewitz-s On War.compressed.pdf

PEN SEKKAU. (2020). 10 Kasau _ “Wujudkan TNI AU Menjadi Angkatan Udara Yang Disegani Di Kawasan.” https://tni-au.mil.id/kasau-wujudkan-tni-au-menjadi-angkatan/

PK, M. (2020). Advancement of Technology and Future of Warfare. October, 508–527. https://www.researchgate.net/publication/344506910%0AADVANCEMENT

Rajapatel, M., Dhoble, P. P., & Raut, P. O. (2019). Implementation of Stealth Tech on Tank. International Research Journal of Engineering and Technology, 6(11), 1658–1664.

Rao, A. G., & Mahulikar, S. P. (2018). Integrated review of stealth technology and its role in airpower PhD Student , 2 Assistant Professor Department of Aerospace Engineering. December 2002.

Rao, R. J. (1999). Introduction to Camouflage and Deception (D. Bedi (Ed.); Vol. 1). DESIDOC.

Sape, J. (2014). GELOMBANG ELEKTROMAGNETIK. http://nary-junary.blogspot.com/2014/11/gelombang-elektromagnetik.html

Stealth Technology and Air Warfare. (1991).

Sugiyono, P. D. (2013). Memahami Penelitian Kualitatif (8th ed.). ALFABETA.

Suk, G. H. (1990). The Design of Broadband Radar Absorbing Surfaces.

Tellis, A. J. (2011). Dogfight. Carnegie Endowment for International Peace.

Wang, C., Chen, M., Lei, H., Yao, K., Li, H., Wen, W., & Fang, D. (2017). Radar stealth and mechanical properties of a broadband radar absorbing structure. Composites Part B: Engineering, 123(May), 19–27. https://doi.org/10.1016/j.compositesb.2017.05.005

Zhang, Y., Von Hagen, J., & Wiesbeck, W. (2002). Patch array as artificial magnetic conductors for antenna gain improvement. Microwave and Optical Technology Letters, 35(3), 172–175. https://doi.org/10.1002/mop.10548

Zikidis, K., & Skondras, A. (2014). Low Observable Principles, Stealth Aircraft and Anti-Stealth Technologies Introduction – Historical background of stealth aircraft. Journal of Computations & Modelling, 4(1), 129–165.

Ziolkowski, R. W. (2006). Metamaterial-Based Antennas : Research and Developments. 9, 1267–1275.

Downloads

Published

2023-06-30