Determination of Paleotsunami Inundation Zone Using Finite Difference Method in Southern Coastal Lebak, Banten
DOI:
https://doi.org/10.33172/jmb.v9i1.1557Abstrak
Paleotsunami deposits have been found in Indonesia, including in Pacitan, Kulon Progo, Cilacap, Pangandaran, and Sukabumi. This research aims to obtain an ideal model for determining the paleotsunami inundation zone along the southern coastal Lebak, Banten using finite difference numerical modeling through the MOST (Method of Splitting Tsunamis)-based ComMIT software. Field observations were made to identify the presence of paleotsunami deposits in the swale area on the southern coastal Lebak, Banten. Several tsunami scenarios such as Pangandaran in 2006, Indian Ocean Tsunami (IOT) in 2004, Tohoku in 2011, Sunda Strait megathrust segment, and megathrust along the south of Java were used in the modeling process to identify the characteristics of paleotsunami that were produced the tsunami deposits in the study area. Modeling is carried out using two schemes, such as using the ComMIT database unit source (subduction zone segments) and using the earthquake source parameters that are entered manually. The results show the best tsunami scenario that may have ever occurred in research area is the tsunami event with magnitude of 9.1 Mw, with maximum inundation range of 5.2 km, and run-off of up to 32 m, which is estimated as a tsunami event that precipates paleotsunami deposits in study area.Referensi
Abi Tiyana, R., Supriyanto, Rani Puji Astuti, T., Abdul Jabbar, G., & Rizqy Septyandy, M. (2022). Mineralogy, geochemistry, and genesis of glauconite mineral from paleotsunami deposit in Lebak, Banten, Indonesia. E3S Web of Conferences, 340, 01004. https://doi.org/10.1051/e3sconf/202234001004
Amnion, C. J., Lay, T., Kanamori, H., & Cleveland, M. (2011). A rupture model of the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 63(7), 693–696. https://doi.org/10.5047/eps.2011.05.015
Deng, H. (2018). Assessing Tsunami Risk in Southwest Java, Indonesia: Paleo-Tsunami Deposits and Inundation Modeling. https://search.proquest.com/openview/613c2fa0baee926679057bdba12880b0/1?pq-origsite=gscholar&cbl=18750&diss=y
Gusman, A. R., Tanioka, Y., & Takahashi, T. (2012). Numerical experiment and a case study of sediment transport simulation of the 2004 Indian Ocean tsunami in Lhok Nga, Banda Aceh, Indonesia. Earth, Planets and Space, 64(10), 817–827. https://doi.org/10.5047/eps.2011.10.009
Hafeez, H. (2008). Inundation of Tsunami Waves and Its Relation to the Tsunami Run Up. Pakistan Journal of Meteorology, 5(9), 5–10.
Hanifa, N. R., Sagiya, T., Kimata, F., Efendi, J., Abidin, H. Z., & Meilano, I. (2014). Interplate coupling model off the southwestern coast of Java, Indonesia, based on continuous GPS data in 2008-2010. Earth and Planetary Science Letters, 401, 159–171. https://doi.org/10.1016/j.epsl.2014.06.010
Harris, R., & Major, J. (2017). Waves of destruction in the East Indies: the Wichmann catalogue of earthquakes and tsunami in the Indonesian region from 1538 to 1877. Geological Society, London, Special Publications, 441(1), 9–46. https://doi.org/10.1144/SP441.2
Ilahude, D., & Kamiludin, U. (2011). Abrasion Wave Obstructs Tourism Development in Coastal Regions of Binuangeun, Lebak - Banten. Bulletin of the Marine Geology, 26(1), 51. https://doi.org/10.32693/bomg.26.1.2011.34
Ishimura, D., & Yamada, K. (2019). Palaeo-tsunami inundation distances deduced from roundness of gravel particles in tsunami deposits. Scientific Reports, 9(1), 1–8. https://doi.org/10.1038/s41598-019-46584-z
Lynett, P. J. (2009). Tsunami Inundation, Modeling of. In R. I. Tilling (Ed.), Complexity in Tsunamis, Volcanoes, and their Hazards (pp. 117–133). Springer US. https://doi.org/10.1007/978-1-0716-1705-2_569
Mueck, M., Muhari, A., Post, J., Stein, E., Co, S. W., Birkmann, J., Riedlinger, T., & Strunz, G. (2011). Guideline for Tsunami Risk Assessment in Indonesia Scientific Proposal for Practitioner and End Users. Indonesian-German Working Group on Tsunami Risk Assessment.
PUSGEN. (2017). Buku Peta Gempa 2017.
Scheffers, A. M. (2015). Chapter 3 - Paleotsunami Research—Current Debate and Controversies. In J. F. Shroder, J. T. Ellis, & D. J. Sherman (Eds.), Coastal and Marine Hazards, Risks, and Disasters (pp. 59–92). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-396483-0.00003-0
Sugianto, D., Nurjaya, I. W., MN Natih, N., & Pandoe, W. W. (2017). Potensi Rendaman Tsunami Di Wilayah Lebak Banten. Jurnal Kelautan Nasional, 12(1), 9. https://doi.org/10.15578/jkn.v12i1.6241
Suwandana, E. (2019). Dinamika morfologi pantai Kabupaten Tangerang Banten dan Pantai Indah Kapuk Jakarta melalui analisis citra google earth. Jurnal Perikanan dan Kelautan, 9(1), 55–68.
Titov, V. V., Moore, C. W., Greenslade, D. J. M., Pattiaratchi, C., Badal, R., Synolakis, C. E., & Kânoǧlu, U. (2011). A New Tool for Inundation Modeling: Community Modeling Interface for Tsunamis (ComMIT). Pure and Applied Geophysics, 168(11), 2121–2131. https://doi.org/10.1007/s00024-011-0292-4
Warnasuriya, T. W. S., Gunaalan, K., & Gunasekara, S. S. (2018). Google Earth: A New Resource for Shoreline Change Estimation—Case Study from Jaffna Peninsula, Sri Lanka. Marine Geodesy, 41(6), 546–580. https://doi.org/10.1080/01490419.2018.1509160
Wesseling, P. (2009). The shallow-water equations. 305–338. https://doi.org/10.1007/978-3-642-05146-3_8
Widiyantoro, S., Gunawan, E., Muhari, A., Rawlinson, N., Mori, J., Hanifa, N. R., Susilo, S., Supendi, P., Shiddiqi, H. A., Nugraha, A. D., & Putra, H. E. (2020). Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java Indonesia. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-72142-z
Zheng, J., & Hryciw, R. D. (2015). Traditional soil particle sphericity, roundness, and surface roughness by computational geometry. Geotechnique, 65(6), 494–506. https://doi.org/10.1680/geot.14.P.192