KONSEP TEKNOLOGI REAKTOR NUKLIR SEBAGAI SISTEM PROPULSI KAPAL PERANG LOGISTIK LANDING PLATFORM DOCK

Authors

  • Muhamad Irfan Universitas Pertahanan Indonesia
  • Romie Oktovianus Bura Universitas Pertahanan Indonesia
  • Dedy Wahyudi Universitas Pertahanan Indonesia

Abstract

Saat ini kapal perang belum dapat beroperasi secara optimal akibat permasalahan pasokan bahan bakar. Untuk mengatasi permasalahan kekurangan pasokan BBM dan ancaman kelangkaan minyak bumi dunia di masa depan, maka perlu dipikirkan strategi yang tepat dalam arah kebijakan pembangunan kapal perang TNI AL. Salah satu sumber EBT yang sudah digunakan sejak cukup lama dan kemungkinan akan menjadi pilihan menarik adalah energi nuklir sebagai sistem propulsi kapal perang. Pada penelitian ini dilakukan analisis konsep teknologi reaktor nuklir sebagai sistem propulsi yang tepat untuk diterapkan pada kapal LPD. Setelah studi literatur berbagai klasifikasi reaktor nuklir dan referensi desain reaktor nuklir yang telah ada, ditentukan konsep teknologi reaktor nuklir yang sesuai dengan standar kebutuhan tersebut sehingga dikerucutkan menjadi beberapa konsep teknologi reaktor nuklir yang dipilih, dan akhirnya ditentukan satu sebagai konsep teknologi reaktor nuklir dengan metode AHP, yaitu reaktor nuklir tipe MSR yang merupakan reaktor daya cepat pembiak modular kecil yang mampu menghasilkan daya termal sekurang-kurangnya 33 MWth, berbahan bakar Thorium-Uranium233 dan berpendingin garam cair sehingga memanfaatkan tekanan rendah serta mampu beroperasi pada suhu yang sangat tinggi.

Kata Kunci: Konsep Teknologi, Landing Platform Dock, Molten Salt Reactor, Reaktor Nuklir, dan Sistem Propulsi.

References

Buku

AECL, 1981, CANDU Nuclear Power System, Atomic Energy of Canada Limited, Mississauga, Ontario, Canada

AECL, 1996, CANDU 6 Technical Outline, Atomic Energy of Canada Limited, Mississauga, Ontario, Canada

Bäumer, R., Kalinowski, I., Röhler, E., Schöning, J., and Wachholz, W. 1990. “Construction and operating experience with the

-MW THTR nuclear power plant,” Nuclear Engineering and Design, Volume 121, Issue 2, 2 July 1990.

Buku Putih Pertahanan. 2015.

Copinger, D. A., and Moses, D. L. Fort Saint Vrain Gas Cooled Reactor Operation Experience, Oak Ridge National

Laboratory, NUREG/CR-6839, ORNL/TM-2003/223, January 2004.

Knief, R. A., 1981, Nuclear Energy Technology – Theory and Practice of Comercial Nuclear Power, Hemisphere Publishing Corporation, New York

KOPEC, Korean Standart Nuclear Power Plant, KSNP (OPR) Design, Korean power Engineering INC

Lahey, R.T. and Moody, F.J. 1975. The Thermal Hydraulics of Boiling Water Reactor, American Nuclear Society

Lamarsh, J.R. 1966. Introduction to Nuclear Reactor Theory

LeBlanc, David, 2012, A New Look at Molten Salt Reactors, Presentation to Canadian Nuclear Safety Commission

Neimark, L. A. 1961. Examination of an Irradiated Prototype Fuel Element for the Elk River Reactor, Argonne National Laboratory, ANL-6160.

Rosenthal, M. W., Kasten, P. R., and Briggs, R. B. 1970. “Molten-Salt Reactors – History, Status, and Potential,” Nuclear Applications and Technology, vol. 8.2, pp. 107–117.

Royal Academy of Engineering. (2013). Future Ship Powering Option: Exploring Alternative Methods of Ship Propulsion. UK: Royal Academy of Engineering.

Sarber, W. K. ed., Results of the Initial Nuclear Tests on the LWBR (LWBR Development Program), Bettis Atomic Power

Laboratory, WAPD-TM-1336, June 1976.

Tong, L.S. and Weisman, J., 1970, Thermal Analysis of Pressurizer Water Reactor, American Nuclear Society

Waltar, Alan E. 2012. Fast Spectrum Reactors. Springer.

Website

ACR – Advanced CANDU Reactor Concept, www.aecltechnologies.com

Baiquni, Ahmad. (2013, 18 Desember). Tiap tahun TNI utang BBM Rp 8 triliun ke Pertamina. Harian Merdeka Online. http://www.merdeka.com/uang/tiap-tahun-tni-utang-bbm-rp-8-triliun-ke-pertamina.html

Matterson Marine Pty Ltd, World Warship. Oktober 2014. http://www.worldwarships.com

Jurnal

Bajaj, S. S., and Gore, A. R. 2006. “The Indian PHWR,” Nuclear Engineering and Design,vol. 236, no. 7.

Bäumer, R., Kalinowski, I., Röhler, E., Schöning, J., and Wachholz, W. 1990. “Construction and operating experience with the

-MW THTR nuclear power plant,” Nuclear Engineering and Design, Volume 121, Issue 2, 2 July 1990.

Irfan, M. (2018): Analisis Neutronik Small Lead-Bismuth Cooled Nuclear Power Reactor Without On-Site Refuelling (SPINNOR) Siklus Thorium Dengan Sistem Kode SRAC, Tugas Akhir Program Sarjana, Institut Teknologi Bandung.

Jacobs, J.G.C.C. (2007). Nuclear Short Sea Shipping: The Integration of a Helium Cooled Reactor in a 800 Teu Container Feeder. Netherlands: TU Delft.

Mathieu, L. et al., “Possible Configurations for the TMSR and Advantages of the Fast Non- Moderated Version,” Nuclear Science and Engineering, vol. 161, pp. 78–79, 2009.

Rosenthal, M. W., Kasten, P. R., and Briggs, R. B. 1970. “Molten-Salt Reactors – History, Status, and Potential,” Nuclear Applications and Technology, vol. 8.2, pp. 107–117.

Salimy, Djati H. 2010. Aplikasi Reaktor Nuklir Temperatur Tinggi Pada Produksi Hidrogen dari Air Proses Hibrida Siklus Belerang. Prosiding Seminar Nasional Pengembangan Energi Nuklir IV, 2010 Pusat Pengembangan Energi Nuklir Badan Tenaga Nuklir Nasional.

Snell, V. G., and Webb, J. R., 1998, CANDU-9 – The CANDU Product to Meet Customer and Regulator Requirements Now and in The Future, Pacific Basin Nuclear Conference Proceeding, p.p. 1445-1453

Su’ud, Zaki. 2007. Advanced SPINNORs Concept and The Prospect of Their Deployment in Remote Area. International Conference on Advances in Nuclear Science and Engineering in Conjunction with LKSTN 2007 (199-207).

Dokumen

Dewan Energi Nasional. 2013. Lampiran Surat Nomor 311/DEN/2013

tertanggal 31 Mei 2013 Tentang Draft Peraturan Presiden Republik

Indonesia Tentang Kebijakan Energi Nasional.

Dewan Perwakilan Rakyat. 2010. Laporan Kunjungan Kerja Komisi I DPR RI ke Propinsi Nusa Tenggara Barat dalam Reses Masa Persidangan II Tahun Sidang 2010-2011 Tanggal 19-22 Desember 2010. Jakarta: Penyusun.

Forsbeg, C. W., Peterson, P. F., Zhao, H.H., 2004, An advanced Molten salt Reactor Using High Temperature Reactor Technology, ICAPP. 2004. MSR. Paper, 2004 International Congress on Advanced in Nuclear Power Plants (ICAPP ’04)

Embedded International Topical Meeting, 2004 American Nuclear Sociaty Annual Meeting, Pittsburgh, Pennsylvania.

IAEA Advanced Reactors Information System (ARIS). 2016. Advances in

Small Modular Reactor Technology Developments. Austria: International Atomic Energy Agency (IAEA).

IAEA TECDOC – 119, Current Status and Future Development of Modular High Temperature Reactor.

Kakodkar, Anil. Towards sustainable, secure and safe energy future: Leveraging opportunities with Thorium

LeBlanc, David. 2012, Molten Salt Reactors and the Oil Sands: Odd Couple or Key to North American Energy

Independence?, Presentation to Canadian Nuclear Safety Commission.

LeBlanc, David. 2013, The Curious Tale of Molten Salt Reactor, Presentation to Canadian Nuclear Safety Commission, Ottawa Branch.

Nuclear Options for Hydrogen and Hydrogen Based Liquid Fuel Production, MIT Report: MIT-NES-TR-001, September

Downloads

Published

2020-06-26