ANALISIS PENGARUH DENSITAS DARI INTI PROYEKTIL BAJA DAN TUNGSTEN CARBIDE – COBALT (WC – 8Co) TERHADAP PENETRASI PROYEKTIL PADA TARGET SILICON CARBIDE (SiC)

Authors

  • Abdul Basyir Universitas Pertahanan Indonesia
  • Romie O. Bura Universitas Pertahanan Indonesia
  • Denny Lesmana Universitas Pertahanan Indonesia

DOI:

https://doi.org/10.33172/tsj.v1i2.477

Abstract

Teknologi body armor terus mengalami perkembangan secara simultan. Awalnya material utama dari body armor adalah baja, kemudian berkembang menjadi material keramik, karena keramik mempunyai properti low density, high hardness, dan high compressive strength. Salah satu teknologi yang dapat dilakukan untuk meningkatkan performa amunisi adalah dengan menggunakan material yang high density dan high hardness pada inti proyektil dari amunisi, seperti material tungsten carbidecobalt (WC – 8Co). Berdasarkan hal tersebut, maka akan dilakukan analisis tentang pengaruh substitusi material proyektil inti baja standar Pindad dengan inti WC – 8Co terhadap performa amunisi kaliber 5.56 × 45 pada material target keramik silicon carbide (SiC). Penelitian ini menggunakan metode eksperimen yang mengacu pada STANAG 4241 dengan melakukan uji balistik. Dari penelitian ini didapat data bahwa untuk material target SiC (1) Proyektil inti WC – 8Co menghasilkan DoP 1.5 kali lebih besar daripada proyektil inti baja standar Pindad, dan (2) Proyektil inti WC – 8Co menghasilkan diameter kawah 1.3 kali lebih besar daripada proyektil inti baja standar Pindad. Data ini menunjukkan bahwa untuk material target SiC, performa penetrasi proyektil yang menggunakan inti WC – 8Co lebih baik daripada performa penetrasi proyektil yang menggunakan inti baja standar Pindad.

Kata kunci: WC – 8Co, baja standar Pindad, dan SiC.

References

Buku

Barrett, Soren., Christiansen, Rasmus Viking L. R., dan Othman, Ahmad. 2016. Ballistic Properties of Projectile. Aalborg: Aalborg University.

Crouch, Ian G. 2017. The Science of Armour Materials. Duxford: Woodhead Publishing Material.

Farrar, C. L. dan Leeming, D. W. 1983. Military Ballistics: A Basic Manual. Oxford: Brassey’s Publishers Ltd.

KEMHAN RI. 2014. Postur Pertahanan Negara. Jakarta: Kementerian Pertahanan Republik Indonesia.

Lehowicz, dkk. 2012. Testing of Body Armor Materials: Phase III. Washington: The National Academic Press.

Medvedovski, Eugene. 2006. Advanced Ceramics for Personnel Armor: Current Status and Future. Ohio: The American Ceramic Society.

Mileq Technologies Pte. Ltd. 2011. Measuring, Test, Analysis, and Calibration Equipment for Interior, Exterior, and Target Ballistics in Tunnel, Range, Field, and Laboratory. Bukit Batok: Mileq Technologies Pte. Ltd.

NIJ Standard. 2008. Ballistic Resistance of Body Armor: NIJ Standard-0101.06. Washington DC: National Institute of Justice.

Rosenberg, Zvi dan Dekel, Erez. 2016. Terminal Ballistic. Haifa: Springer.

STANAG 4172. 1993. Standardization Agreement of 5.56 Ammunition. Brussels: NATO.

STANAG 4241. 2018. Standardization Agreement (AOP) of Bullet Impact Munition Test Procedures Edition A, Version 1. Brussels: NATO.

Yudhanto, Arief. 2018. Terminal Ballistics & Armor Materials. Bogor: Teknologi Persenjataan, Universitas Pertahanan.

Zhuzhou Chaoyu Industrial Co. Ltd. 2018. YL80.1 Grade Testing Report. Zhuzhou: Zhuzhou Chaoyu Industrial Co. Ltd.

Jurnal

Coghe, Frederik., Nsiampa, Nestor., dan Rabet, Luc. 2010. Experimental and Numerical Investigations on the Origins of the Bodywork Effect (K – Effect). New York: Journal of Applied Mechanics.

Prasob, P. A., et al. 2016. Projectile Penetrating Multilayer Composite Armor. Chennai: Indian Journal of Science and Technology Vol. 9 (47).

Downloads

Published

2019-04-14