PEMILIHAN MATERIAL PELAPISAN UNTUK PENINGKATAN DAYA TAHAN BILAH TURBIN PESAWAT

Authors

  • Ni Made Kesuma Astuti Indrianingsih Putri Universitas Pertahanan RI
  • Sovian Aritonang Universitas Pertahanan RI
  • Toto Sudiro Universitas Pertahanan RI

Abstract

Pendekatan material baru yang canggih adalah mutlak untuk menjawab tantangan wahana udara pada masa kini. Adanya beban struktural dan keadaan ekstrim pada saat beroperasi meliputi temperatur dan tekanan tinggi menjadi parameter utama dalam pemilihan material baru yang akan digunakan. Penelitian ini menyajikan pemilihan kandidat material yang cocok untuk penghalang termal pada bilah turbin pesawat. Berbagai kegagalan bilah turbin yang selama ini dialami diantaranya ketahanan termal, oksidasi suhu tinggi, dan kelelahan siklus tinggi yang kemudian dijadikan acuan dalam melakukan pemilihan material baru. Didapati paduan superalloy berbasis nikel memiliki batasan dalam kinerja temperatur tinggi dan ketahanan fisik yang tinggi dari komposit menjadi perhatian khusus, karena merupakan properti utama yang fokus untuk aplikasi bilah pada mesin turbin gas pesawat terbang. Sehingga dilakukan komposit dengan material baru yang kuat pada kondisi operasi pada 12000C, yakni material dengan struktur keramik seperti SiC dan Si3N4 serta material dengan sturktur silisida seperti MoSi2.

References

Abioye, A., Atanda, P., Majolagbe, S., Isadare, D., Abioye, O., Akinluwade, K., & Adetunji, A. (2015). Material Selection for Gas Turbine Blade Coating Using GRANTA Material Selector. Advances in Research, 5(1), 1–9. https://doi.org/10.9734/AIR/2015/15769.

Carter, T. J. (2005). Common failures in gas turbine blades. Engineering Failure Analysis, 12(2), 237–247. https://doi.org/10.1016/j.engfailanal.2004.07.004

Cemal, M., Uzunonat, Y., Cevik, S., & Diltemiz, F. (2012). Potential of MoSi2 and MoSi2-Si3N4 Composites for Aircraft Gas Turbine Engines. In R. Agarwal (Ed.), Recent Advances in Aircraft Technology. InTech. https://doi.org/10.5772/38475

Chou, T. C., & Nieh, T. G. (1993). Pesting of the high-temperature intermetallic MoSi2. JOM, 45(12), 15–21. https://doi.org/10.1007/BF03222509.

Chumachenko, N. N., Yurieva, T. M., Tarasova, D. V., & Aleshina, G. I. (1980). State of molybdenum in silica-molybdenum oxide catalysts. Reaction Kinetics and Catalysis Letters, 14(1), 87–91. https://doi.org/10.1007/BF02061270.

Estrada, C. (2007). NEW TECHNOLOGY USED IN GAS TURBINE BLADE MATERIALS. Jurnal Scientia et Technica Ano, XII No 36(Universida Technologica de Pereira).

Mali, H. S., & Unune, D. R. (2017). Machinability of Nickel-Based Superalloys: An Overview. In Reference Module in Materials Science and Materials Engineering (p. B9780128035818099000). Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.09817-9.

Matsunoshita, H., Sasai, Y., Fujiwara, K., Kishida, K., & Inui, H. (2016). Plastic deformation of directionally solidified ingots of binary and some ternary MoSi 2 /Mo 5 Si 3 eutectic composites. Science and Technology of Advanced Materials, 17(1), 517–529. https://doi.org/10.1080/14686996.2016.1218248.

Nasrazadani, Hassani, S., Shokrollah. (2016). Modern analytical techniques in faulire analysis of aerospace, chemical, and oil and gas industries. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100117-2.00010-8.

Pan, J., Surappa, M. K., Saravanan, R. A., Liu, B. W., & Yang, D. M. (1998). Fabrication and characterization of SiC/MoSi2 composites. Materials Science and Engineering: A, 244(2), 191–198. https://doi.org/10.1016/S0921-5093(97)00553-4.

Perepezko, J. H. (2009). The Hotter the Engine, the Better. Science, 326(5956), 1068–1069. https://doi.org/10.1126/science.1179327.

Rao, N. (2011). Materials for Gas Turbines – An Overview. In E. Benini (Ed.), Advances in Gas Turbine Technology. InTech. https://doi.org/10.5772/20730.

Rodrigues, D., & Lavorato, P. (2016). Maintenance, Repair and Overhaul (MRO) Fundamentals and Strategies: An Aeronautical Industry Overview. International Journal of Computer Applications, 135(12), 21–29. https://doi.org/10.5120/ijca2016908563.

Shah, D. M. (1992). MoSi2 and Other Silicides as High-Temperature Structural Materials. Superalloys 1992 (Seventh International Symposium), 409–422. https://doi.org/10.7449/1992/Superalloys_1992_409_422.

Superalloys for gas turbine engines. (2012). In Introduction to Aerospace Materials (pp. 251–267). Elsevier. https://doi.org/10.1533/9780857095152.251.

Uzunonat, Y., Üzgür, S., & Kushan, M. C. (2013). New Strategies for Improvement of Structural Gas Turbine Engine Parts. Applied Mechanics and Materials, 325–326, 1368–1373. https://doi.org/10.4028/www.scientific.net/AMM.325-326.1368.

Zhang, H., Wu, H., & Gu, S. (2013). Preparation and properties of MoSi2 based composites reinforced by carbon nanotubes. Ceramics International, 39(7), 7401–7405. https://doi.org/10.1016/j.ceramint.2013.02.083.

Downloads

Published

2022-06-30